
Package: linkcomm (via r-universe)
August 26, 2024

Type Package

Title Tools for Generating, Visualizing, and Analysing Link
Communities in Networks

Version 1.0-14

Date 2021-02-03

Author Alex T. Kalinka <alex.t.kalinka@gmail.com>, with contributions
from Alain Guenoche

Maintainer Alex T. Kalinka <alex.t.kalinka@gmail.com>

Description Link communities reveal the nested and overlapping
structure in networks, and uncover the key nodes that form
connections to multiple communities. linkcomm provides a set of
tools for generating, visualizing, and analysing link
communities in networks of arbitrary size and type. The
linkcomm package also includes tools for generating,
visualizing, and analysing Overlapping Cluster Generator (OCG)
communities. Kalinka and Tomancak (2011)
<doi:10.1093/bioinformatics/btr311>.

License GPL (>= 2)

URL https://alextkalinka.github.io/linkcomm/,

https://github.com/alextkalinka/linkcomm

Depends igraph, RColorBrewer

Imports dynamicTreeCut, grid, utils

Suggests fastcluster, R.rsp

VignetteBuilder R.rsp

Encoding UTF-8

LazyData yes

LazyLoad yes

NeedsCompilation yes

Repository https://alextkalinka.r-universe.dev

RemoteUrl https://github.com/alextkalinka/linkcomm

1

https://doi.org/10.1093/bioinformatics/btr311
https://alextkalinka.github.io/linkcomm/
https://github.com/alextkalinka/linkcomm

2 Contents

RemoteRef HEAD

RemoteSha b47d5e6018a7067d2cfd2ab9e70834ca68ac7e8e

Contents
linkcomm-package . 3
corLinkcommCentrality . 4
cutDendrogramAt . 5
edge.duplicates . 7
get.community.overlaps . 8
get.shared.nodes . 9
getAllNestedComm . 10
getClusterRelatedness . 11
getCommunityCentrality . 12
getCommunityConnectedness . 14
getCommunityMatrix . 15
getEdgesIn . 16
getLinkCommunities . 17
getNestedHierarchies . 21
getNodesIn . 22
getOCG.clusters . 23
graph.feature . 25
human_pp . 26
integer.edgelist . 26
karate . 27
layout.spencer.circle . 28
lesmiserables . 29
linkcomm2clustnsee . 30
linkcomm2cytoscape . 31
LinkDensities . 32
meta.communities . 33
newLinkCommsAt . 35
numberEdgesIn . 37
orderCommunities . 38
plot.linkcomm . 39
plot.OCG . 40
plotLinkCommDend . 41
plotLinkCommGraph . 43
plotLinkCommMembers . 46
plotLinkCommSumm . 47
plotLinkCommSummComm . 48
plotOCGraph . 50
pp_rnapol . 52
print.linkcomm . 52
print.OCG . 53
read.OCG . 54
weighted . 55

linkcomm-package 3

which.communities . 56

Index 57

linkcomm-package The linkcomm package

Description

linkcomm provides tools for the generation, visualization, and analysis of link communities in net-
works of arbitrary size and type.

Details

Link communities reveal the nested and overlapping structure in networks, and uncover the key
nodes that form connections to multiple communities. linkcomm provides tools for generating,
visualizing, and analysing link communities in networks of arbitrary size and type.

For a more detailed overview of how to use the package:

vignette(topic = "linkcomm", package = "linkcomm")

To run an interactive demonstration of linkcomm within R:

demo(topic = "linkcomm", package = "linkcomm")

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Ahn, Y.Y., Bagrow, J.P., and Lehmann, S. (2010). Link communities reveal multiscale complexity
in networks. Nature 466, 761-764.

Becker, E., Robisson, B., Chapple, C.E., Guenoche, A. and Brun, C. (2012) Multifunctional proteins
revealed by overlapping clustering in protein interaction network. Bioinformatics 28, 84-90.

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

Spencer, R. (2010). http://scaledinnovation.com/analytics/communities/comlinks.html

See Also

getLinkCommunities, getOCG.clusters, plot.linkcomm, pp_rnapol, lesmiserables, karate,
weighted, igraph, RColorBrewer, grid

http://scaledinnovation.com/analytics/communities/comlinks.html

4 corLinkcommCentrality

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Plot a graph layout of the link communities.
plot(lc, type = "graph")

Use a Spencer circle layout.
plot(lc, type = "graph", layout = "spencer.circle")

Calculate a community-based measure of node centrality.
getCommunityCentrality(lc)

Find nested communities.
getAllNestedComm(lc)

Uncover the relatedness between communities.
getClusterRelatedness(lc)

corLinkcommCentrality Correlation of Community Centrality with Classic Centrality

Description

This function calculates the correlation between the community centrality and classic centrality
measures for a set of nodes in a network, and plots a scatterplot of the relationship together with a
fitted straight line.

Usage

corLinkcommCentrality(x, centrality = "degree", type = "commweight",
method = "spearman", plot = TRUE, pch = 20, ...)

Arguments

x An object of class linkcomm.

centrality A character string naming the classic centrality measure. Can be one of "degree",
"betweenness", "closeness", and "constraint". Defaults to "degree".

type A character string naming the type of community centrality. Can be "commweight"
or "commconn", defaults to "commweight".

method A character string naming the correlation method. Can be one of "spearman",
"pearson", or "kendall". Defaults to "spearman".

plot Logical, whether to plot a scatterplot of the relationship, defaults to TRUE.

pch An integer specifying the plot symbol (see par). Defaults to 20.

... Additional arguments to be passed to plot.

cutDendrogramAt 5

Details

The correlation between community centrality and classic centrality measures, such as degree or
betweenness, may reveal discrepancies, thereby indicating that community centrality scores provide
a unique reflection of node importance.

Value

A correlation coefficient.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

getCommunityCentrality

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Correlate community centrality with degree centrality.
corLinkcommCentrality(lc)

cutDendrogramAt Extract Meta-Communities

Description

This function extracts meta-communities from a dendrogram of community relatedness based on a
user-defined place at which to cut the dendrogram.

Usage

cutDendrogramAt(x, lc = NULL, cutat = NULL, plot = TRUE, col = TRUE,
pal = brewer.pal(9, "Set1"), labels = FALSE, plotcut = TRUE,
right = TRUE, verbose = TRUE, ...)

6 cutDendrogramAt

Arguments

x An object of class hclust, usually generated by getClusterRelatedness.

lc An object of class linkcomm. If included, the resulting plot will display addi-
tional information about the clusters. Defaults to NULL.

cutat A numerical value at which to cut the dendrogram.

plot Logical, whether to plot the dendrogram and the meta-communities, defaults to
TRUE.

col Logical, whether to colour the meta-communites.

pal A character vector describing a colour palette to be used for colouring the meta-
communites in the dendrogram plot. Defaults to brewer.pal(9, "Set1").

labels Logical, whether to put labels on the dendrogram. Defaults to FALSE.

plotcut Logical, whether to display a horizontal line where the dendrogram is cut. De-
faults to TRUE.

right Logical, whether to orient the dendrogram to the right. Defaults to TRUE.

verbose Logical, whether to display the progress of colouring the dendrogram. Defaults
to TRUE.

... Additional arguments to be passed to plot.

Details

Extracting meta-communities allows the user to explore community relatedness and structure at
higher levels.

Value

A list of integer vectors, referring to meta-communities of link communities.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

getClusterRelatedness

edge.duplicates 7

Examples

Generate graph, extract link communities, and cluster communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)
hc <- getClusterRelatedness(lc)

Cut dendrogram at 1 and extract meta-communities.
cutDendrogramAt(hc, cutat = 1)

edge.duplicates Find and Remove Edge Loops and Duplicates

Description

This function finds and removes loops, edge duplicates, and bi-directional edges.

Usage

edge.duplicates(network, verbose = TRUE)

Arguments

network An edge list, which is either a data frame or a character or integer matrix with
two columns.

verbose Logical, whether to display the progress of the function on the screen. Defaults
to TRUE.

Details

This function removes loops, duplicate and bi-directional edges; the edges that occur closer to the
end of the edge list will be removed.

Value

A list with the following elements: edges - a character matrix of the edges in the network with
any loops or duplicate edges removed; inds - an integer vector of the edge indices of any loop or
duplicate edges in the original network.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

8 get.community.overlaps

Examples

Generate graph and remove loops and duplicate edges.
g <- swiss[,3:4]
g.dup <- edge.duplicates(g)

get.community.overlaps

Find Node Overlaps between Communities

Description

This function returns lists of communities that share at least one node with each other.

Usage

get.community.overlaps(x)

Arguments

x An object of class linkcomm or OCG.

Value

A list of length equal to the number of communities. Each element contains an integer vector giving
the community IDs for communities sharing at least one node with each community. NAs indicate
that a community shares no nodes with any other communities.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Get list of overlapping communities.
ov <- get.community.overlaps(lc)

get.shared.nodes 9

get.shared.nodes Get Nodes Shared by Communities

Description

This function returns the nodes that are shared by specific sets of communities.

Usage

get.shared.nodes(x, comms)

Arguments

x An object of class linkcomm or OCG.

comms An integer vector giving the community IDs for which an intersecting set of
shared nodes should be returned.

Value

A character vector giving the shared node names.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Get shared nodes for communities 1 and 7.
get.shared.nodes(lc, comms = c(1,7))

10 getAllNestedComm

getAllNestedComm Find Nested Communities

Description

This function returns communities of nodes that are entirely nested within other larger communities
of nodes.

Usage

getAllNestedComm(x, verbose = FALSE, plot = FALSE)

Arguments

x An object of class linkcomm.

verbose Logical, whether to print to the screen a warning that individual community IDs
are not clustered in any other communities. Defaults to FALSE.

plot Logical, whether to plot graphs of the nested communities. Defaults to FALSE.

Details

Nested community structures may reveal interesting relationships among sets of nodes.

Value

A named list of integer vectors; names are integers referring to nested communities, and the integer
vectors are the communities that the named community is nested in.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

getNestedHierarchies

getClusterRelatedness 11

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Find nested communities.
getAllNestedComm(lc)

getClusterRelatedness Hierarchichal Clustering of Link Communities

Description

This function hierarchically clusters the link communities themselves and returns an object of class
hclust.

Usage

getClusterRelatedness(x, clusterids = 1:x$numbers[3], hcmethod = "ward.D",
cluster = TRUE, plot = TRUE, cutat = NULL, col = TRUE,
pal = brewer.pal(11, "Spectral"), labels = FALSE, plotcut = TRUE,
right = TRUE, verbose = TRUE, ...)

Arguments

x An object of class linkcomm.
clusterids An integer vector of community IDs. Defaults to all communities.
hcmethod A character string naming the hierarchical clustering method to use. Can be one

of "ward.D", "ward.D2", "single", "complete", "average", "mcquitty",
"median", or "centroid". Defaults to "ward.D".

cluster Logical, whether to cluster the communities. If FALSE, the function returns the
upper triangular dissimilarity matrix as a vector. Defaults to TRUE.

plot Logical, whether to plot the cluster dendrogram.
cutat A numerical value at which to cut the dendrogram. If NULL, the dendrogram is

not cut and meta-communities are not returned. Defaults to NULL.
col Logical, whether to colour the dendrogram. Defaults to TRUE.
pal A character vector describing a colour palette to be used for colouring the meta-

communites in the dendrogram plot. Defaults to brewer.pal(11, "Spectral").
labels Logical, whether to add labels to the dendrogram plot.
plotcut Logical, whether to display a horizontal line where the dendrogram is cut. De-

faults to TRUE.
right Logical, whether to orient the dendrogram to the right. Defaults to TRUE.
verbose Logical, whether to display the progress of the calculation on the screen. De-

faults to TRUE.
... Additional arguments to be passed to plot.

12 getCommunityCentrality

Details

Extracting meta-communities allows the user to explore community relatedness and structure at
higher levels. Community relatedness is calculated using the Jaccard coefficient and the number of
nodes that community i and j share:

S(i, j) =
|ni ∩ nj |
|ni ∪ nj |

Value

Either a numerical vector (the upper triangular dissimilarity matrix - if cluster = FALSE), a list of
integer vectors (the meta-communities - if cutat is not NULL), or an object of class hclust (if
cluster is TRUE and cutat is NULL).

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

meta.communities, cutDendrogramAt, hclust

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Cluster the link communities.
getClusterRelatedness(lc)

Cluster the link communities, cut the dendrogram, and return the meta-communities.
getClusterRelatedness(lc, cutat = 1)

getCommunityCentrality

Calculate Community Centrality Measures for Nodes

Description

This function returns community-based node centrality measures.

getCommunityCentrality 13

Usage

getCommunityCentrality(x, nodes = names(x$numclusters), type = "commweight",
normalise = TRUE)

Arguments

x An object of class linkcomm.
nodes A character vector giving the names of nodes for calculating community cen-

trality scores. Defaults to all nodes.
type A character string naming the community centrality measure. Can be one of

"commweight" or "commconn" (see Details below). Defaults to "commweight".
normalise Logical, whether to normalise community connectedness for "commconn". De-

faults to TRUE. Will be ignored for "commweight".

Details

Community-based measures of node centrality provide an alternative to classic measures of node
centrality. "commweight" weights each community that a node belongs to by how similar that
community is to each of the other communities to which the node also belongs. For node i the
community centrality is

CC(i) =

N∑
i∈j

1− 1

m

m∑
i∈j∩k

S(j, k)

where the main sum is over the N communities to which node i belongs, and S(j, k) refers to
the similarity between community j and k, calculated as the Jaccard coefficient for the number of
shared nodes between each community pair, and this is averaged over the m communities paired
with community j and in which node i jointly belongs. "commconn" weights each community that
a node belongs to by how many connections the community forms outside of itself relative to how
many connections the community has within itself (the inverse of modularity), so that nodes that
belong to more highly connecting communitites will receive a higher community centrality score.
For node i the community centrality is

CC(i) =

N∑
i∈j

eij
ěB(j)

ěW (j)

where eij is the number of edges node i has in community j, ěB(j) =
eB(j)

nj d̄
is the number of

edges community j makes outside of itself normalised by the number of nodes in community j
multiplied by the average degree in the network, and ěW (j) =

eW (j)

n(n−1)/2 is the number of edges
within community j normalised by the total number possible.

Value

A named numerical vector where the names are node names and the numbers are community cen-
trality measures.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

14 getCommunityConnectedness

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

getCommunityConnectedness

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Calculate community centrality.
cc <- getCommunityCentrality(lc)

getCommunityConnectedness

Calculate Community Connectedness or Modularity

Description

This function returns a measure of how relatively outwardly or inwardly connected a community is.

Usage

getCommunityConnectedness(x, clusterids = 1:x$numbers[3], conn = "conn",
normalise = TRUE, verbose = FALSE)

Arguments

x An object of class linkcomm.

clusterids An integer vector of community IDs. Defaults to all communities.

conn A character string naming the connectedness measure to use. Can be one of
"conn" or "mod" (see Details below). Defaults to "conn".

normalise Logical, whether to normalise community connectedness measures by the num-
ber of nodes in individual communities. Defaults to TRUE.

verbose Logical, whether to display the progress of the calculation on the screen. De-
faults to FALSE.

getCommunityMatrix 15

Details

The connectedness and modularity of different communities indicates whether a particular com-
munity is bridging several other communities, or existing as a relatively isolated module. The
modularity of community i is

Mi =

(
ew(i)

ni(ni − 1)/2

)
.

(
eb(i)

nid̂

)−1

where ew(i) is the number of edges within community i, eb(i) is the number of edges community i
makes to other communities, ni is the number of nodes in community i, and d̂ is the average degree
in the network. Community connectedness is the inverse of this value.

Value

A named numerical vector, where the names are community IDs and the numbers are community
connectedness or modularity scores.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

getCommunityCentrality

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Get community connectedness.
cc <- getCommunityConnectedness(lc, normalise = FALSE)

getCommunityMatrix Construct a Community Membership Matrix

Description

This function returns a binary matrix with nodes as rows, communities as columns, and unit entries
indicating membership in a community.

16 getEdgesIn

Usage

getCommunityMatrix(x, nodes = head(names(x$numclusters), 20))

Arguments

x An object of class linkcomm.

nodes A character vector containing the nodes for the community membership matrix.
Defaults to the 20 (or less) nodes that belong to the most communities.

Value

A binary matrix with nodes as rows and communities as columns.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

plot.linkcomm

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Get community membership matrix.
getCommunityMatrix(lc)

getEdgesIn Extract Edge Indices from Communities

Description

This function returns edge indices that belong to certain communities or that are incident upon
certain nodes.

Usage

getEdgesIn(x, clusterids = 1, nodes = NULL, all = FALSE)

getLinkCommunities 17

Arguments

x An object of class linkcomm or OCG.

clusterids An integer vector of community IDs. Defaults to community 1.

nodes A character vector specifying node(s) for which edge indices should be returned.
Overrides clusterids. Defaults to NULL.

all Logical, whether the edges for all communities to which the named nodes be-
long should be returned. Will have an effect only if nodes is not NULL. If
FALSE, edges that are directly incident upon the named nodes will be returned.
Defaults to FALSE.

Value

An integer vector of edge indices.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Get edges from community 1.
getEdgesIn(lc)

getLinkCommunities Extract Link Communities from a Network

Description

This function extracts link communities from networks of arbitrary size and type.

Usage

getLinkCommunities(network, hcmethod = "average", use.all.edges = FALSE,
edglim = 10^4, directed = FALSE, dirweight = 0.5,
bipartite = FALSE, dist = NULL, plot = TRUE,
check.duplicates = TRUE, removetrivial = TRUE,
verbose = TRUE)

18 getLinkCommunities

Arguments

network An edge list, which is a matrix or data frame with 2 or 3 columns. The first 2
columns contain the nodes that interact with each other, which can be character
strings or integer values. The optional third column is a numerical vector of
weights for each edge. Can also be a character string naming a file containing
an edge list.

hcmethod A character string naming the hierarchical clustering method to use. Can be
one of "ward", "single", "complete", "average", "mcquitty", "median",
or "centroid". Defaults to "average" (if the number of edges is greater than
edglim then "single" is used).

use.all.edges Logical, indicating whether edge similarities should be calculated for all pairs
of edges (TRUE), or only for edge pairs that share a node (FALSE) as in the
original Ahn et al. (2010) algorithm. Defaults to FALSE. If TRUE, networks
are treated as undirected.

edglim An integer value indicating the largest number of edges permissible for the hier-
archical clustering to be handled in memory. Above this value the upper triangu-
lar dissimilarity matrix will be written to disk and read and written as clustering
proceeds until the file size is 0 bytes (see Details below). Defaults to 104.

directed Logical, whether the network is directed. Defaults to FALSE.

dirweight A numerical value between 1 and 0 inclusive indicating the weight that will be
attached to edges that share a node but are in the opposite orientation. Defaults
to 0.5. Will be ignored if directed = FALSE.

bipartite Logical, whether the input network is bi-partite. See Details for an explanation
of how bi-partite networks are handled. Defaults to FALSE.

dist An object of class "dist" representing a user-defined distance matrix for the
network. Note, this must be the lower triangular matrix of an n*n distance ma-
trix, where n is the number of edges in the network (make sure duplicated edges
are removed). If NULL, then the distance matrix is calculated by the algorithm.
Defaults to NULL.

plot Logical, whether to plot summary output from the algorithm (dendrogram and
partition density plot). Defaults to TRUE. Note, if there are more than 1500 but
less than edglim edges then the dendrogram will be plotted without colour and
in a separate panel from the partition density to avoid lengthy rendering times;
when there are more than edglim edges then only the partition density will be
plotted.

check.duplicates

Logical, whether to check for and remove loops, duplicate edges, and bi-directional
edges. Defaults to TRUE. Note, if you wish to avoid this step by setting this pa-
rameter to FALSE then you must be certain that there are no duplicate edges in
the network.

removetrivial Logical, whether to remove trivial community clusters that contain 2 edges. De-
faults to TRUE.

verbose Logical, whether to display the progress of the algorithm on the screen. Defaults
to TRUE.

getLinkCommunities 19

Details

This is the main algorithm used for extracting link communities from networks of arbitrary size
and type. Input networks may be directed, weighted, both directed and weighted, or neither. The
algorithm used is the one outlined by Ahn et al. (2010). The similarity between links, eik and ejk,
that share a node, k, is calculated using the Jaccard coefficient

S(eik, ejk) =
|n+(i) ∩ n+(j)|
|n+(i) ∪ n+(j)|

where n+(i) refers to the first-order node neighbourhood of node i, which includes node i itself
(inclusive neighbour set). After assigning pairwise similarities to all of the links in the network, the
links are hierarchically clustered using single-linkage clustering, and the resulting dendrogram is cut
at a point that maximises the density of links within the clusters normalising against the maximum
and minimum numbers of links possible in each cluster, known as the partition density. For directed
and weighted networks, the Tanimoto coefficient is used for assigning similarity between links

S(eik, ejk) =
ai.aj

|ai|2 + |aj |2 − ai.aj

where ai refers to a vector describing the weights of links between node i and the nodes in the
first-order neighbourhoods of both nodes i and j (equal to 0 in the event of an absent link). For
directed networks, links to nodes shared by both node i and j are given a user-defined weight below
1 if they are in the opposite orientation.

For bi-partite networks, the set of neighbours (instead of the inclusive neighbour set) is used to
count nodes for the edge similarity metric because node i and node j cannot share an edge in a
bi-partite network. The partition density for bi-partite networks is calculated as:

Dc =
2

M

∑
c

mc
mc + 1− nc

2nc0nc1 − 2(nc − 1)

where M is the total number of edges, mc is the number of edges in subset c, nc is the number
of nodes in subset c, nc0 is the number of nodes in partition 0, and nc1 is the number of nodes in
partition 1.

Value

An object of class linkcomm, which is a list containing the following components:

numbers An integer vector with the number of edges, nodes, and communities.

hclust An object of class hclust, which contains information about the hierarchical
clustering of links.

pdmax A numerical value indicating the height of the dendrogram at which the partition
density is maximised.

pdens A numerical matrix with 2 columns; the first is the heights at which clusters
appear and the second is the partition density.

nodeclusters A data frame consisting of 2 columns; the first contains node names, and the
second contains single community IDs for each node. All communities and
their nodes are represented, but not necessarily all nodes.

20 getLinkCommunities

clusters A list of integer vectors containing the link IDs that belong to each community.
Community IDs are the numerical position of the communities in the list.

edges A data frame with 3 columns; the first two contain nodes that interact with each
other, and the third is an integer vector of community IDs indicating community
membership for each link.

numclusters A named integer vector. Names are node names and integer values are the num-
ber of communities to which each node belongs.

clustsizes A named integer vector. Names are community IDs and integer values indicate
the number of nodes that belong in each community.

igraph An object of class igraph. The network is represented here as an igraph object.
edgelist A character matrix with 2 columns containing the nodes that interact with each

other.
directed Logical indicating whether the network is directed.
bipartite Logical indicating whether the network is bi-partite.

Note

When the number of links is less than edglim the hierarchical clustering will be handled in mem-
ory. Above this value the upper triangular dissimilarity matrix will be compressed and written to
disk and read and written as clustering proceeds until the file size is 0 bytes using a compiled C++
function. In this case the hierarchical clustering method will always be "single" to enhance per-
formance for large networks. The size of edglim can be modified to suit the computer resources
available to the user. As a guide, a network with 104 links will require ((104)2) ∗ 8 = 800 MB to
be handled in an uncompressed format in the memory.

For directed networks, a pair of bidirectional interactions between two nodes cannot be assigned
similarities and the edge that appears lower in the edge list for the network will be discarded.

When use.all.edges is TRUE, the algorithm may be slow as all pairs of edges will be compared
(n2 comparisons, where n is the number of edges).

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Ahn, Y.Y., Bagrow, J.P., and Lehmann, S. (2010). Link communities reveal multiscale complexity
in networks. Nature 466, 761-764.

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

plot.linkcomm, newLinkCommsAt, meta.communities

getNestedHierarchies 21

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Extract communities by writing a temporary file to disk.
lc <- getLinkCommunities(g, edglim = 10)

Use similarities between all pairs of edges.
lc <- getLinkCommunities(g, use.all.edges = TRUE)

Directed network.
lc <- getLinkCommunities(g, directed = TRUE, dirweight = 0.8)

Weighted network.
g <- cbind(swiss[,3:4], runif(nrow(swiss[,3:4])))
lc <- getLinkCommunities(g)

Directed and weighted network.
lc <- getLinkCommunities(g, directed = TRUE, dirweight = 0.8)

getNestedHierarchies Find Nested Structures in Communities

Description

This function determines whether a particular community is nested within any other communities.

Usage

getNestedHierarchies(x, clusid = 1, verbose = TRUE, plot = TRUE, ids = FALSE)

Arguments

x An object of class linkcomm.

clusid An integer value indicating the community ID whose nesting structure will be
tested. Defaults to 1.

verbose Logical, whether to display a warning that a particular community is not nested
in any other communities on the screen. Defaults to FALSE.

plot Logical, whether to plot a graph layout of the nested community.

ids Logical, whether to return only the community IDs that the community is nested
in, or the node names also. Defaults to FALSE.

Value

Either a list of character vectors, each giving the nodes that the community is nested in, or an integer
vector of community IDs that the community is nested in.

22 getNodesIn

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

getAllNestedComm

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Determine if community 1 is nested in any other communities.
getNestedHierarchies(lc, clusid = 1)

getNodesIn Extract Nodes from Communities

Description

This function returns node names that belong to sets of communities.

Usage

getNodesIn(x, clusterids = 1, type = "names")

Arguments

x An object of class linkcomm or OCG.

clusterids An integer vector of community IDs. Defaults to community 1.

type A character string specifying how nodes are returned. Can be one of "names"
or "indices".

Value

A character vector of node names (if type is "names") or a numerical vector of node indices (if type
is "indices").

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

getOCG.clusters 23

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Get nodes from community 1.
getNodesIn(lc)

getOCG.clusters Generate Overlapping Cluster Generator (OCG) Communities

Description

This function generates communities based on the OCG algorithm.

Usage

getOCG.clusters(network, init.class.sys = 3, max.class.card = 0,
cent.class.sys = 1, min.class = 2, verbose = TRUE, keep.out = FALSE)

Arguments

network Either a character string naming the file containing the network as an edge list,
or a data frame/matrix object containing the edge list.

init.class.sys An integer number specifying the Initial Class System: 1 - Maximal Cliques, 2
- Edges, or 3 - Centered Cliques. Defaults to 3.

max.class.card An integer number specifying the maximum allowed class cardinality. Defaults
to 0, which indicates no constraint.

cent.class.sys A binary value indicating the choice of class system for centered cliques: 0 -
Final class system, needs the expected minimum number of clusters and the
maximum caldinality of the final clusters, or 1 - the class system that maximizes
modularity. Defaults to 1.

min.class An integer number specifying the minimum number of expected classes. De-
faults to 2.

verbose Logical, whether to display progress of the algorithm to the screen. Defaults to
TRUE.

keep.out Logical, whether to keep the OCG partition intermediate file on disk or not.
Defaults to FALSE.

24 getOCG.clusters

Value

An object of class OCG, which is a list containing the following elements:

numbers An integer vector with the number of edges, nodes, and communities.

modularity An integer number specifying the modularity of the network.

Q A real number specifying the value of Q generated by the OCG algorithm.

nodeclusters A data frame consisting of 2 columns; the first contains node names, and the
second contains single community IDs for each node. All communities and
their nodes are represented, but not necessarily all nodes.

numclusters A named integer vector. Names are node names and integer values are the num-
ber of communities to which each node belongs.

igraph An object of class igraph. The network is represented here as an igraph object.

edgelist A character matrix with 2 columns containing the nodes that interact with each
other.

clustsizes A named integer vector. Names are community IDs and integer values indicate
the number of nodes that belong in each community.

Note

For optimal results, the input network must contain at least one connected component (a subgraph
in which any two vertices are connected by a path, which is not connected to additional vertices in
the supergraph).

Author(s)

Alain Guenoche (main algorithm), and ported into R by Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Becker, E., Robisson, B., Chapple, C.E., Guenoche, A. and Brun, C. (2012) Multifunctional proteins
revealed by overlapping clustering in protein interaction network. Bioinformatics 28, 84-90.

Examples

Generate graph and extract OCG communities.
g <- swiss[,3:4]
oc <- getOCG.clusters(g)

graph.feature 25

graph.feature Make Node or Edge Graph Features

Description

This function returns vectors of node sizes or edge widths for use in plot.linkcomm.

Usage

graph.feature(x, type = "nodes", clusterids = 1:length(x$clusters),
nodes = NULL, indices, features, default = 15, showall = FALSE)

Arguments

x An object of class linkcomm.
type A character string specifying either "nodes" or "edges".
clusterids An integer vector of community IDs that will be plotted. Defaults to all com-

munities.
nodes A character vector specifying node(s) that will be plotted. Overrides clusterids.

Defaults to NULL.
indices An integer vector specifying the indices of the nodes or edges that will be given

specific size or width values. See getNodesIn and getEdgesIn for ways to
generate these indices. Also see examples in vignette(topic = "linkcomm",
package = "linkcomm").

features An integer vector specifying the node or edge sizes for the nodes or edges that
are to be changed. If there is a single value then this will be applied to all nodes
or edges specified in indices, otherwise the features vector must be the same
length as the indices vector and the values will be matched to each other.

default An integer value specifying the node size or edge width that all nodes or edges
not specified by indices will take. Defaults to 15.

showall Logical, whether edges that don’t belong to communities will also be plotted or
not. Defaults to FALSE.

Value

A named integer vector of node sizes or edge widths. The names will be either node names or edge
indices.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

26 integer.edgelist

See Also

plotLinkCommGraph, getNodesIn, getEdgesIn, vignette(topic = "linkcomm", package = "linkcomm").

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Make node size vector for all nodes that belong to community 1.
graph.feature(lc, indices = getNodesIn(lc, type = "indices"), features = 20, default = 5)

Make edge width vector for all edges that belong to community 1.
graph.feature(lc, type = "edges", indices = getEdgesIn(lc), features = 5, default = 1)

human_pp Sample Human Protein Interactome

Description

A set of 864 human proteins involved in 999 interactions.

Usage

human_pp

Format

Data frame with 2 columns.

References

Becker, E., Robisson, B., Chapple, C.E., Guenoche, A. and Brun, C. (2012) Multifunctional proteins
revealed by overlapping clustering in protein interaction network. Bioinformatics 28, 84-90.

integer.edgelist Convert A Network to an Integer Edgelist

Description

This function converts a character string edgelist into an integer edgelist.

Usage

integer.edgelist(network)

karate 27

Arguments

network An edge list, which is a matrix or data frame with 2 or 3 columns. The first 2
columns contain the nodes that interact with each other, which can be character
strings or integer values. The optional third column is a numerical vector of
weights for each edge, which is stripped from the output.

Value

A list containing the following components:

edges A matrix with two columns containing the integer edgelist.

nodes A named integer vector mapping node integer IDs to their character string equiv-
alents.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

See Also

getLinkCommunities

Examples

Generate graph and convert into an integer edgelist.
g <- data.frame(letters[1:10],letters[6:15])
gi <- integer.edgelist(g)

karate Social Network in a Karate Club

Description

A social network of friendships between 34 members of a karate club at a US university in the
1970s (Zachary 1977).

Usage

karate

Format

Data frame with 2 columns.

Source

https://github.com/gephi/gephi/wiki/Datasets

https://github.com/gephi/gephi/wiki/Datasets

28 layout.spencer.circle

References

Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal
of Anthropological Research 33, 452-473.

layout.spencer.circle Calculate Node Coordinates for a Spencer Circle

Description

This function returns the x-y coordinates for nodes in a Spencer circle together with community
anchor positions.

Usage

layout.spencer.circle(x, clusterids = 1:x$numbers[3], verbose = TRUE,
jitter = 0.2)

Arguments

x An object of class linkcomm.

clusterids An integer vector of community IDs. Defaults to all communities.

verbose Logical, whether to print the progress of the calculation to the screen. Defaults
to TRUE.

jitter A positive numerical value specifying the range (negative to positive) of random,
uniformly distributed noise that will be added to nodes that have identical x-y
coordinates. Defaults to 0.2.

Details

This algorithm anchors communities evenly around the circumference of a circle in their dendro-
gram order (to minimise crossing over of links) and positions nodes within the circle according to
how many links they possess in each of the communities (Spencer, 2010). Thus, nodes that have
links to a lot of communities will get pushed into the centre of the circle making this method well
suited for representing ego networks where one or a small number of nodes belong to multiple
communities.

Value

A list with the following components:

nodes A numerical matrix with nodes as rows and with 2 columns; the first contains
the x coordinates and the second the y coordinates.

anchors A numerical matrix with communities as rows and with 2 columns of x and y
coordinates.

lesmiserables 29

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

Spencer, R. (2010). http://scaledinnovation.com/analytics/communities/comlinks.html

See Also

plot.linkcomm, plotLinkCommGraph

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Extract x-y coordinates for nodes in a Spencer circle.
layout.spencer.circle(lc)

lesmiserables Co-Appearance Network from Les Miserables

Description

The co-appearance network for Les Miserables (Knuth 1993). Involves 252 interactions among 77
nodes.

Usage

lesmiserables

Format

Data frame with 2 columns.

Source

https://github.com/gephi/gephi/wiki/Datasets

References

Knuth, D. E. (1993). The Stanford GraphBase: A Platform for Combinatorial Computing, Addison-
Wesley, Reading, MA.

http://scaledinnovation.com/analytics/communities/comlinks.html
https://github.com/gephi/gephi/wiki/Datasets

30 linkcomm2clustnsee

linkcomm2clustnsee Write a Partition File for Clust&See

Description

This function writes out a partition file which can be imported into the Cytoscape plug-in Clust&See.

Usage

linkcomm2clustnsee(x, file = "temp.cns", network.name = NULL)

Arguments

x An object of class linkcomm or OCG.
file A character string naming a Clust&See partition file (.cns extension). Defaults

to "temp.cns".
network.name A character string providing a name for the network. This name must correspond

to the file name of the network that will be imported into Cytoscape. If NULL,
the object name, x, is used. Defaults to NULL.

Details

Cytoscape is an open source platform for complex-network analysis and visualization, and Clust&See
(Spinelli et al. 2013) is a Cytoscape plug-in used for visualizing and manipulating the clusters pro-
duced by various network clustering algorithms.

Value

Used for its side-effect of writing a Clust&See partition file to disk.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Becker, E. et al. (2012) Multifunctional proteins revealed by overlapping clustering in protein
interaction network. Bioinformatics 28, 84-90.

Gambette, P. and Guenoche, A. (2011) Bootstrap clustering for graph partitioning. RAIRO-Operations
Research 45, 339-352.

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

Shannon, P. et al. (2003) Cytoscape: A software environment for integrated models of biomolecular
interaction networks. Genome Research 13, 2498-2504.

Spinelli, L. et al. (2013) Clust&See: a Cytoscape plugin for the identification, visualization, and
manipulation of network clusters. BioSystems 113, 91-95.

linkcomm2cytoscape 31

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Write a partition file to disk.
Not run:
linkcomm2clustnsee(lc)

End(Not run)

linkcomm2cytoscape Write an Edge Attribute File for Cytoscape

Description

This function writes out an edge attribute file for visualising the link communities in Cytoscape.

Usage

linkcomm2cytoscape(x, interaction = "pp", ea = "temp.ea")

Arguments

x An object of class linkcomm.

interaction A character string indicating the type of interaction between nodes. Defaults to
"pp" for protein-protein interaction.

ea A character string indicating the file for writing the edge attributes. Defaults to
"temp.ea".

Details

Cytoscape is an open source platform for complex-network analysis and visualization (Shannon et
al. 2003).

Value

Used for its side-effect of writing an edge attribute file to disk.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

32 LinkDensities

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

Shannon, P. et al. (2003) Cytoscape: A software environment for integrated models of biomolecular
interaction networks. Genome Research 13, 2498-2504.

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Write an edge attribute file to disk.
Not run:
linkcomm2cytoscape(lc)

End(Not run)

LinkDensities Calculate Link Community Link Densities

Description

This function calculates link densities for link communities.

Usage

LinkDensities(x, clusterids = 1:x$numbers[3])

Arguments

x An object of class linkcomm.

clusterids An integer vector of community IDs. Defaults to all communities.

Details

The link density of community i is

Di =
ei − ni + 1

(ni(ni − 1)/2)− ni + 1

where ei is the number of edges in community i and ni is the number of nodes in community i.

Value

A named numerical vector, where the names are community IDs and the numbers are link densities.

meta.communities 33

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Ahn, Y.Y., Bagrow, J.P., and Lehmann, S. (2010). Link communities reveal multiscale complexity
in networks. Nature 466, 761-764.

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

plot.linkcomm, plotLinkCommSummComm

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Calculate link densities.
ld <- LinkDensities(lc)

meta.communities Produce a Set of Meta-Communities

Description

This function returns meta-communities by hierarchically clustering link communities based on
their number of shared nodes.

Usage

meta.communities(x, hcmethod = "ward.D", deepSplit = FALSE)

Arguments

x An object of class linkcomm or OCG.

hcmethod A character string naming the hierarchical clustering method to use. Can be one
of "ward.D", "ward.D2", "single", "complete", "average", "mcquitty",
"median", or "centroid". Defaults to "ward.D".

deepSplit Logical or integer value from 0 to 4 indicating how fine-grained the clusters
should be with larger values giving increased cluster structure. Defaults to
FALSE.

34 meta.communities

Details

Extracting meta-communities allows the user to explore community relatedness and structure at
higher levels. Community relatedness is calculated using the Jaccard coefficient and the number of
nodes that community i and j share:

S(i, j) =
|ni ∩ nj |
|ni ∪ nj |

A hierarchical clustering dendrogram is generated based on the above distance metric and then an
algorithm is used to automatically extract clusters (Langfelder et al. 2008). This function works
best on large networks with a large number of link communities.

Value

An object of class linkcomm, which is a list containing the following components:

numbers An integer vector with the number of edges, nodes, and communities.

hclust An object of class hclust, which contains information about the hierarchical
clustering of links.

pdmax A numerical value indicating the height of the dendrogram at which the partition
density is maximised.

pdens A numerical matrix with 2 columns; the first is the heights at which clusters
appear and the second is the partition density.

nodeclusters A data frame consisting of 2 columns; the first contains node names, and the
second contains single community IDs for each node. All communities and
their nodes are represented, but not necessarily all nodes.

clusters A list of integer vectors containing the link IDs that belong to each community.
Community IDs are the numerical position of the communities in the list.

edges A data frame with 3 columns; the first two contain nodes that interact with each
other, and the third is an integer vector of community IDs indicating community
membership for each link.

numclusters A named integer vector. Names are node names and integer values are the num-
ber of communities to which each node belongs.

clustsizes A named integer vector. Names are community IDs and integer values indicate
the number of nodes that belong in each community.

igraph An object of class igraph. The network is represented here as an igraph object.

edgelist A character matrix with 2 columns containing the nodes that interact with each
other.

directed Logical indicating whether the network is directed.

bipartite Logical indicating whether the network is bi-partite.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

newLinkCommsAt 35

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

Langfelder, P., Zhang, B., and Horvath, S. (2008) Defining clusters from a hierarchical cluster tree:
the Dynamic Tree Cut package for R. Bioinformatics 24, 719-720.

See Also

getClusterRelatedness

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Produce meta-communities.
Not run: mc <- meta.communities(lc)

newLinkCommsAt User-Defined Link Communities

Description

This function allows the user to extract link communities by cutting the dendrogram at a specified
height.

Usage

newLinkCommsAt(x, cutat = 0.5)

Arguments

x An object of class linkcomm.

cutat A numerical value indicating the height at which to cut the dendrogram. De-
faults to 0.5.

Details

Users may wish to explore the communities formed by cutting the dendrogram higher or lower than
the maximum partition density height. After cutting at a new height, the pdmax value in the resulting
object will be set to the cutat value used by the user, only to distinguish the new object from the
one generated by the link communities algorithm (the global partition density maximum does not
change).

36 newLinkCommsAt

Value

An object of class linkcomm, which is a list containing the following components:

numbers An integer vector with the number of edges, nodes, and communities.

hclust An object of class hclust, which contains information about the hierarchical
clustering of links.

pdmax A numerical value indicating the height of the dendrogram at which the partition
density is maximised.

pdens A numerical matrix with 2 columns; the first is the heights at which clusters
appear and the second is the partition density.

nodeclusters A data frame consisting of 2 columns; the first contains node names, and the
second contains single community IDs for each node. All communities and
their nodes are represented, but not necessarily all nodes.

clusters A list of integer vectors containing the link IDs that belong to each community.
Community IDs are the numerical position of the communities in the list.

edges A data frame with 3 columns; the first two contain nodes that interact with each
other, and the third is an integer vector of community IDs indicating community
membership for each link.

numclusters A named integer vector. Names are node names and integer values are the num-
ber of communities to which each node belongs.

clustsizes A named integer vector. Names are community IDs and integer values indicate
the number of nodes that belong in each community.

igraph An object of class igraph. The network is represented here as an igraph object.

edgelist A character matrix with 2 columns containing the nodes that interact with each
other.

directed Logical indicating whether the network is directed.

bipartite Logical indicating whether the network is bipartite.

Note

After cutting at a new height, the pdmax value in the resulting object will be set to the cutat value
used by the user, only to distinguish the new object from the one generated by the link communities
algorithm (the global partition density maximum does not change).

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

numberEdgesIn 37

See Also

getLinkCommunities

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

User defined communities.
lc2 <- newLinkCommsAt(lc, cutat = 0.8)

numberEdgesIn Extract Node Community Membership by Edges

Description

This function returns the number of edges node(s) contain in each community.

Usage

numberEdgesIn(x, clusterids = 1:x$numbers[3], nodes)

Arguments

x An object of class linkcomm or OCG.

clusterids An integer vector of community IDs. Defaults to all communities.

nodes A character vector specifying node(s) for which edge membership should be
returned.

Value

A named list of named integer vectors specifying the number of edges in each community a node
belongs in. Names of the integer vectors are community IDs, and names of the list are node names.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

38 orderCommunities

Examples

Generate graph and extract OCG communities.
g <- swiss[,3:4]
oc <- getOCG.clusters(g)

Get edges from community 1.
numberEdgesIn(oc, nodes = 1)

orderCommunities Order Link Communities According to the Dendrogram

Description

This function returns link communities in the same order as in the hierarchical clustering dendro-
gram.

Usage

orderCommunities(x, clusterids = 1:x$numbers[3], verbose = TRUE)

Arguments

x An object of class linkcomm.

clusterids An integer vector of community IDs. Defaults to all communities.

verbose Logical, whether to print progress of the calculation to the screen. Defaults to
TRUE.

Details

Ordering link communities according to the dendrogram can aid in visualization when plotting them
as a Spencer circle because it minimses crossing over between links.

Value

A list with the following components:

ordered A list of integer vectors. These are the ordered communities of links.

clusids An integer vector of community IDs in their new order.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

plot.linkcomm 39

See Also

plot.linkcomm, plotLinkCommGraph

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Order communities according to the dendrogram.
orderCommunities(lc)

plot.linkcomm The linkcomm Plotting Function

Description

This function plots various different linkcomm graphs.

Usage

S3 method for class 'linkcomm'
plot(x, type = "", ...)

Arguments

x An object of class linkcomm.

type A character string specifying the type of plot. Can be one of "summary", "members",
"graph", "commsumm", and "dend". See Details below.

... Additional arguments to be passed to plot.

Details

"summary" plots the dendrogram and partition density plot side-by-side;
"members" plots a community membership matrix;
"graph" plots a graph layout of the network with coloured link communities;
"commsumm" plots a bar graph or pie chart summarising community modularity or connectedness
for each community;
"dend" plots a dendrogram with coloured link communities.

See the individual plotting functions for details of arguments that can be passed to plot.linkcomm:
plotLinkCommSumm, plotLinkCommMembers, plotLinkCommGraph, plotLinkCommSummComm, and
plotLinkCommDend.

Value

Plots to the current device.

40 plot.OCG

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

plotLinkCommSumm, plotLinkCommMembers, plotLinkCommGraph, plotLinkCommSummComm, plotLinkCommDend

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Plot a graph of link communities.
plot(lc, type = "graph")

plot.OCG The OCG Plotting Function

Description

This function plots various different OCG graphs.

Usage

S3 method for class 'OCG'
plot(x, type = "", ...)

Arguments

x An object of class OCG.

type A character string specifying the type of plot. Can be one of "members" or
"graph". See Details below.

... Additional arguments to be passed to plot.

Details

"members" plots a community membership matrix;
"graph" plots a graph layout of the network with coloured link communities.

See the OCG plotting function for details of arguments that can be passed to plot.OCG: plotOCGraph,
plotLinkCommMembers.

plotLinkCommDend 41

Value

Plots to the current device.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

plotOCGraph, plotLinkCommMembers

Examples

Generate graph and extract OCG communities.
g <- swiss[,3:4]
oc <- getOCG.clusters(g)

Plot a graph of OCG clusters.
plot(oc, type = "graph")

plotLinkCommDend Plot a Coloured Dendrogram of Link Communities

Description

This function is called by plot.linkcomm to plot a dendrogram of coloured link communities.

Usage

plotLinkCommDend(x, col = TRUE, pal = brewer.pal(9, "Set1"),
height = x$pdmax, right = FALSE, labels = FALSE, plotcut = TRUE,
droptrivial = TRUE, leaflab = "none", verbose = TRUE, ...)

Arguments

x An object of class linkcomm.

col Logical, whether to add community-specific colours. Defaults to TRUE.

pal A character vector describing a colour palette to be used for colouring the com-
munites in the dendrogram plot. Defaults to brewer.pal(9, "Set1").

height A numerical value specifying the height at which the dendrogram is cut. De-
faults to the maximum partition density height.

42 plotLinkCommDend

right Logical, whether to orient the dendrogram to the right. Defaults to FALSE.

labels Logical, whether to include labels in the dendrogram. Defaults to FALSE.

plotcut Logical, whether to display a horizontal line where the dendrogram is cut. De-
faults to TRUE.

droptrivial Logical, whether to not colour communities of size 2. Defaults to TRUE.

leaflab A character string describing the leaf labels on the dendrogram. Can be one of
"none", "perpendicular", or "textlike". Defaults to "none".

verbose Logical, whether to display the progress of colouring the dendrogram on screen.
Defaults to TRUE.

... Additional arguments to be passed to plot.

Details

Here we describe the parameters for plotting coloured dendrograms using:
plot(x, type = "dend")

Value

A dendrogram plot.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

plot.linkcomm

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Plot a coloured dendrogram.
plot(lc, type = "dend")

plotLinkCommGraph 43

plotLinkCommGraph Plot a Graph Layout of Link Communities

Description

This function is called by plot.linkcomm to plot a graph layout of the link communities.

Usage

plotLinkCommGraph(x, clusterids = 1:length(x$clusters), nodes = NULL,
layout = layout.fruchterman.reingold, pal = brewer.pal(7, "Set2"),
random = TRUE, node.pies = TRUE, pie.local = TRUE, vertex.radius = 0.03,
scale.vertices = 0.05, edge.color = NULL, vshape = "none", vsize = 15,
ewidth = 3, margin = 0, vlabel.cex = 0.8, vlabel.color = "black",
vlabel.family = "Helvetica", vertex.color = "palegoldenrod",
vlabel = TRUE, col.nonclusters = "black", jitter = 0.2, circle = TRUE,
printids = TRUE, cid.cex = 1, shownodesin = 0, showall = FALSE,
verbose = TRUE, ...)

Arguments

x An object of class linkcomm.

clusterids An integer vector of community IDs. Defaults to all communities.

nodes A character vector naming the nodes to be plotted. If NULL, then community
IDs are used instead. Defaults to NULL.

layout A character string or function identifying the layout algorithm to be used for
positioning nodes in the graph. Defaults to layout.fruchterman.reingold.
See details for alternative layouts.

pal A character vector describing a colour palette to be used for colouring the link
communities in the graph. Defaults to brewer.pal(7, "Set2").

random Logical, whether to randomise the link colours. Defaults to TRUE.

node.pies Logical, whether to plot node pies showing as a pie chart the fraction of each
node’s edges which belong to each of its communities. Defaults to TRUE.

pie.local Logical, whether to include pie segments for just the communities to which the
chosen nodes belong, or for all communities. In the latter case, communities
that are not present among the chosen nodes will appear as empty segments in
the node pies. Will be ignored if node.pies is FALSE. Defaults to TRUE.

vertex.radius A real number specifying the vertex radius. Defaults to 0.03. Will be ignored if
node.pies is FALSE.

scale.vertices A real number specifying the fraction of increase in vertex radius for each com-
munity membership. If NULL then all vertices are the same size. Defaults to
0.05. Will be ignored if node.pies is FALSE.

edge.color A character string specifying the colour of edges. Defaults to "grey". Will be
ignored if node.pies is FALSE.

44 plotLinkCommGraph

vshape A character string specifying the shape of the nodes. Can be one of "none",
"circle", "square", "csquare", "rectangle", "crectangle", and "vrectangle".
Defaults to "none".

vsize An integer vector of node sizes. If there is a single value this will be used for all
nodes. If there are multiple values, it must be the same length as the number of
nodes in the network to be visualized. See graph.feature for generating these
values. This argument only has an effect when vshape is not set to "none".
Defaults to 15.

ewidth An integer vector of edge widths. If there is a single value this will be used for
all edges. If there are multiple values, it must be the same length as the number
of edges in the network to be visualized. See graph.feature for generating
these values. Defaults to 3.

margin A numerical value specifying the amount of empty space around the graph. Neg-
ative values will zoom into the graph. Defaults to 0.

vlabel.cex A numerical value specifying the size of node labels. Defaults to 0.8.

vlabel.color A character string specifying the color of node labels. Defaults to "black".

vlabel.family A character string specifying the font family for node labels. Defaults to "Helvetica".

vertex.color A character string specifying the colour of nodes. If this is a character vector
then the colours will be recycled. Defaults to "palegoldenrod".

vlabel Logical, whether node labels are to be added. Defaults to TRUE.
col.nonclusters

A character string specifying the colour of edges that do not belong to any com-
munities. Will only have an effect if showall is TRUE. Defaults to "black".

jitter A numerical value specifying the range (negative to positive) of random noise
that will be added to nodes that have identical x-y coordinates. Defaults to 0.2.
Only used for Spencer circle layouts.

circle Logical, whether to display a circle for a Spencer circle layout. Defaults to
TRUE.

printids Logical, whether to display community IDs at their anchor points around the
Spencer circle. Defaults to TRUE.

cid.cex A numerical value specifying the size of community IDs around the Spencer
circle. Defaults to 1.

shownodesin An integer value specifying the number of communities a node must belong to
before it will be displayed. If 0 then all nodes are displayed. Defaults to 0.

showall Logical, whether to display all links in the network regardless of whether they
belong to communities or not. Defaults to FALSE.

verbose Logical, whether to print the progress of the calculation to the screen. Defaults
to TRUE.

... Additional arguments to be passed to plot.

Details

Here we describe the parameters for plotting link community graphs using:
plot(x, type = "graph", layout = layout)

plotLinkCommGraph 45

Various graph layouts are available:

1. "spencer.circle"

2. layout.random

3. layout.circle

4. layout.sphere

5. layout.fruchterman.reingold

6. layout.kamada.kawai

7. layout.spring

8. layout.reingold.tilford

9. layout.fruchterman.reingold.grid

10. layout.lgl

11. layout.graphopt

12. layout.mds

13. layout.svd

14. layout.norm

All of these, except the "spencer.circle", are described in more detail in the igraph package.
The "spencer.circle" is described in layout.spencer.circle.

Value

A graph plot.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

plot.linkcomm, layout.spencer.circle, graph.feature, igraph.plotting

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Plot a graph of link communities.
plot(lc, type = "graph")

46 plotLinkCommMembers

Plot a graph of link communities using a Spencer circle layout.
plot(lc, type = "graph", layout = "spencer.circle")

plotLinkCommMembers Plot a Community Membership Matrix for Link Communities

Description

This function is called by plot.linkcomm to plot a community membership matrix for the link
communities.

Usage

plotLinkCommMembers(x, nodes = head(names(x$numclusters), 10),
pal = brewer.pal(11, "Spectral"), shape = "rect", total = TRUE,
fontsize = 11, nspace = 3.5, maxclusters = 20)

Arguments

x An object of class linkcomm.

nodes A character vector specifying the node names that will be included in the plot.
Defaults to the 10 nodes that belong to the most communities.

pal A character vector describing a colour palette to be used for community-specific
colouring. Defaults to brewer.pal(11, "Spectral").

shape A character string specifying the shape of matrix entries. Can be one of "rect"
or "circle". Defaults to "rect".

total Logical, whether to display the number of communities each node belongs to
and the number of nodes in each community. Defaults to TRUE.

fontsize A numerical value specifying font size for the node names. Defaults to 11.

nspace A numerical value specifying how much space to leave at the left for fitting in
node names. Defaults to 3.5.

maxclusters An integer value specifying the maximum number of communities to display.
Defaults to 20.

Value

A community membership matrix plot.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

plotLinkCommSumm 47

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

plot.linkcomm

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Plot a community membership matrix.
plot(lc, type = "members")

plotLinkCommSumm Plot a Summary of the Link Community Algorithm Output

Description

This function is called by plot.linkcomm to plot a summary of the output of the linkcomm algo-
rithm.

Usage

plotLinkCommSumm(x, col = TRUE, pal = brewer.pal(9, "Set1"), right = TRUE,
droptrivial = TRUE, verbose = TRUE, ...)

Arguments

x An object of class linkcomm.

col Logical, whether to colour link communities in the dendrogram. Defaults to
TRUE.

pal A character vector describing a colour palette to be used for colouring the link
community dendrogram. Defaults to brewer.pal(9, "Set1").

right Logical, whether to orient the dendrogram to the right. Defaults to TRUE.

droptrivial Logical, whether to not colour communities of size 2. Defaults to TRUE.

... Additional arguments to be passed to plot.

verbose Logical, whether to display the progress of colouring the dendrogram on the
screen. Defaults to TRUE.

48 plotLinkCommSummComm

Details

Here we describe the parameters for plotting link community summaries using:
plot(x, type = "summary")

Value

A summary plot of the output from the linkcomm algorithm.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

plot.linkcomm

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Plot the modularity of the link communities.
plot(lc, type = "summary")

plotLinkCommSummComm Plot a Summary of the Link Communities

Description

This function is called by plot.linkcomm to plot either connectedness or modularity of individual
link communities.

Usage

plotLinkCommSummComm(x, clusterids = 1:x$numbers[3], summary = "conn",
pie = FALSE, col = TRUE, pal = brewer.pal(11, "Spectral"),
random = FALSE, verbose = TRUE, ...)

plotLinkCommSummComm 49

Arguments

x An object of class linkcomm.
clusterids An integer vector of community IDs. Defaults to all communities.
summary A character string specifying the community summary. Can be one of "conn",

"mod", "ld" for connectedness, modularity, and link densities respectively. De-
faults to "conn".

pie Logical, whether to plot a pie graph. If FALSE, a bar plot is plotted. Defaults to
FALSE.

col Logical, whether to colour each community differently. Defaults to TRUE.
pal A character vector describing a colour palette to be used for colouring the link

communities. Defaults to brewer.pal(11, "Spectral").
random Logical, whether to randomise the link colours. Defaults to FALSE.
verbose Logical, whether to print the progress of the calculation to the screen. Defaults

to TRUE.
... Additional arguments to be passed to plot.

Details

Here we describe the parameters for plotting link community summaries using:
plot(x, type = "commsumm", type = "mod")

Value

A bar graph or pie chart.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

plot.linkcomm

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Plot the modularity of the link communities.
plot(lc, type = "commsumm", summary = "mod")

50 plotOCGraph

plotOCGraph Plot a Graph Layout of OCG Communities

Description

This function is called by plot.OCG to plot a graph layout of the OCG communities.

Usage

plotOCGraph(x, clusterids = 1:x$numbers[3], nodes = NULL, pie.local = TRUE,
incident = TRUE, layout = layout.fruchterman.reingold,
vertex.radius = 0.03, scale.vertices = 0.05, edge.color = "grey",
vertex.label.color = "black", vertex.label.cex = 0.8,
pal = brewer.pal(7,"Set2"), shownodesin = 0, vlabel = TRUE,
random = TRUE, ...)

Arguments

x An object of class OCG.

clusterids An integer vector of community IDs. Defaults to all communities.

nodes A character vector naming the nodes to be plotted. If NULL, then community
IDs are used instead. Defaults to NULL.

pie.local Logical, whether to include pie segments for just the communities to which the
chosen nodes belong, or for all communities. In the latter case, communities
that are not present among the chosen nodes will appear as empty segments in
the node pies. Defaults to TRUE.

incident Logical, whether to include just the communities of the named node(s), or the
community membership of all nodes that interact with the named node(s). De-
faults to TRUE.

layout A character string or function identifying the layout algorithm to be used for
positioning nodes in the graph. Defaults to layout.fruchterman.reingold.
See details for alternative layouts.

vertex.radius A real number specifying the vertex radius. Defaults to 0.03.

scale.vertices A real number specifying the fraction of increase in vertex radius for each com-
munity membership. If NULL then all vertices are the same size. Defaults to
0.05.

edge.color A character string specifying the colour of edges. Defaults to "grey".
vertex.label.color

A character string specifying the color of node labels. Defaults to "black".
vertex.label.cex

A numerical value specifying the size of the node labels. Defaults to 0.8.

pal A character vector describing a colour palette to be used for colouring the link
communities in the graph. Defaults to brewer.pal(7, "Set2").

plotOCGraph 51

shownodesin An integer value specifying the number of communities a node must belong to
before it will be displayed. If 0 then all nodes are displayed. Defaults to 0.

vlabel Logical, whether node labels are to be added. Defaults to TRUE.

random Logical, whether to randomise the link colours. Defaults to TRUE.

... Additional arguments to be passed to plot.

Details

Here we describe the parameters for plotting OCG community graphs using:
plot(x, type = "graph", layout = layout)

Various graph layouts are available:

1. layout.random

2. layout.circle

3. layout.sphere

4. layout.fruchterman.reingold

5. layout.kamada.kawai

6. layout.spring

7. layout.reingold.tilford

8. layout.fruchterman.reingold.grid

9. layout.lgl

10. layout.graphopt

11. layout.mds

12. layout.svd

13. layout.norm

All of these are described in more detail in the igraph package.

Value

A graph plot.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

See Also

plot.OCG, igraph.plotting

52 print.linkcomm

Examples

Generate graph and extract OCG communities.
g <- swiss[,3:4]
oc <- getOCG.clusters(g)

Plot a graph of OCG communities.
plot(oc, type = "graph")

pp_rnapol Sample Yeast Protein Interactome

Description

A set of 56 yeast proteins involved in 651 interactions related to transcription (Yu et al. 2008).

Usage

pp_rnapol

Format

Data frame with 2 columns.

Source

http://interactome.dfci.harvard.edu

References

Yu, H., et al. (2008). High-quality binary protein interaction map of the yeast interactome network.
Science 322, 104-110.

print.linkcomm Print a Summary of a linkcomm Object

Description

This function prints summary statistics for a linkcomm object to the screen.

Usage

S3 method for class 'linkcomm'
print(x, ...)

http://interactome.dfci.harvard.edu

print.OCG 53

Arguments

x An object of class linkcomm.

... Further arguments passed to or from other methods.

Value

Prints summary data to the screen.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

Examples

Generate graph and extract link communities.
g <- swiss[,3:4]
lc <- getLinkCommunities(g)

Print summary statistics to the screen.
print(lc)

print.OCG Print a Summary of an OCG Object

Description

This function prints summary statistics for an OCG object to the screen.

Usage

S3 method for class 'OCG'
print(x, ...)

Arguments

x An object of class OCG.

... Further arguments passed to or from other methods.

Value

Prints summary data to the screen.

54 read.OCG

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

Examples

Generate graph and extract OCG communities.
g <- swiss[,3:4]
oc <- getOCG.clusters(g)

Print summary statistics to the screen.
print(oc)

read.OCG Read an OCG Partition File into R

Description

This function reads in an OCG partition file and converts it into an OCG object for use in R.

Usage

read.OCG(file, elfile = NULL, verbose = FALSE, keep.out = FALSE)

Arguments

file A character string naming the OCG partition file.

elfile A character string naming the file containing the network that the OCG partition
is based upon.

verbose Logical, whether to print progress to the screen. Defaults to FALSE.

keep.out Logical, whether to keep the intermediate files written when reading in the OCG
partition. Defaults to FALSE.

Value

An object of class OCG, which is a list containing the following elements:

numbers An integer vector with the number of edges, nodes, and communities.

modularity An integer number specifying the modularity of the network.

Q A real number specifying the value of Q generated by the OCG algorithm.

weighted 55

nodeclusters A data frame consisting of 2 columns; the first contains node names, and the
second contains single community IDs for each node. All communities and
their nodes are represented, but not necessarily all nodes.

numclusters A named integer vector. Names are node names and integer values are the num-
ber of communities to which each node belongs.

igraph An object of class igraph. The network is represented here as an igraph object.

edgelist A character matrix with 2 columns containing the nodes that interact with each
other.

clustsizes A named integer vector. Names are community IDs and integer values indicate
the number of nodes that belong in each community.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

Examples

Read an OCG partition file into R.
Not run: oc <- read.OCG(file = "OCG_partition.txt", elfile = "network.txt")

weighted Sample Gene Co-Expression Network

Description

A sample of 200 links from a Drosophila gene co-expression network illustrating the input required
for a weighted network (Tomancak et al. 2007).

Usage

weighted

Format

Data frame with 3 columns.

Source

http://www.fruitfly.org/cgi-bin/ex/insitu.pl

http://www.fruitfly.org/cgi-bin/ex/insitu.pl

56 which.communities

References

Tomancak, P. et al. (2007). Global analysis of patterns of gene expression during Drosophila
embryogenesis. Genome Biol 8, 145.1-145.34.

which.communities Extract Community Membership for Nodes

Description

This function returns the community IDs of the communities to which one or more nodes belong.

Usage

which.communities(x, nodes)

Arguments

x An object of class linkcomm or OCG.

nodes A character vector specifying the nodes.

Value

An integer vector of community IDs.

Author(s)

Alex T. Kalinka <alex.t.kalinka@gmail.com>

References

Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation, visualization,
and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011-
2012.

Examples

Generate graph and extract OCG communities.
g <- swiss[,3:4]
oc <- getOCG.clusters(g)

Get edges from community 1.
which.communities(oc, nodes = 1)

Index

∗ datasets
human_pp, 26
karate, 27
lesmiserables, 29
pp_rnapol, 52
weighted, 55

corLinkcommCentrality, 4
cutDendrogramAt, 5, 12

edge.duplicates, 7

get.community.overlaps, 8
get.shared.nodes, 9
getAllNestedComm, 10, 22
getClusterRelatedness, 6, 11, 35
getCommunityCentrality, 5, 12, 15
getCommunityConnectedness, 14, 14
getCommunityMatrix, 15
getEdgesIn, 16, 25, 26
getLinkCommunities, 3, 17, 27, 37
getNestedHierarchies, 10, 21
getNodesIn, 22, 25, 26
getOCG.clusters, 3, 23
graph.feature, 25, 44, 45
grid, 3

hclust, 12, 19, 34, 36
human_pp, 26

igraph, 3, 20, 24, 34, 36, 45, 51, 55
igraph.plotting, 45, 51
integer.edgelist, 26

karate, 3, 27

layout.spencer.circle, 28, 45
lesmiserables, 3, 29
linkcomm (linkcomm-package), 3
linkcomm-package, 3
linkcomm2clustnsee, 30

linkcomm2cytoscape, 31
LinkDensities, 32

meta.communities, 12, 20, 33

newLinkCommsAt, 20, 35
numberEdgesIn, 37

orderCommunities, 38

par, 4
plot.linkcomm, 3, 16, 20, 29, 33, 39, 39, 42,

45, 47–49
plot.OCG, 40, 51
plotLinkCommDend, 39, 40, 41
plotLinkCommGraph, 26, 29, 39, 40, 43
plotLinkCommMembers, 39–41, 46
plotLinkCommSumm, 39, 40, 47
plotLinkCommSummComm, 33, 39, 40, 48
plotOCGraph, 40, 41, 50
pp_rnapol, 3, 52
print.linkcomm, 52
print.OCG, 53

RColorBrewer, 3
read.OCG, 54

weighted, 3, 55
which.communities, 56

57

	linkcomm-package
	corLinkcommCentrality
	cutDendrogramAt
	edge.duplicates
	get.community.overlaps
	get.shared.nodes
	getAllNestedComm
	getClusterRelatedness
	getCommunityCentrality
	getCommunityConnectedness
	getCommunityMatrix
	getEdgesIn
	getLinkCommunities
	getNestedHierarchies
	getNodesIn
	getOCG.clusters
	graph.feature
	human_pp
	integer.edgelist
	karate
	layout.spencer.circle
	lesmiserables
	linkcomm2clustnsee
	linkcomm2cytoscape
	LinkDensities
	meta.communities
	newLinkCommsAt
	numberEdgesIn
	orderCommunities
	plot.linkcomm
	plot.OCG
	plotLinkCommDend
	plotLinkCommGraph
	plotLinkCommMembers
	plotLinkCommSumm
	plotLinkCommSummComm
	plotOCGraph
	pp_rnapol
	print.linkcomm
	print.OCG
	read.OCG
	weighted
	which.communities
	Index

